20 research outputs found

    How the nuclear Fermi motion plus a simple statistical model explains the EMC effect

    Get PDF
    We present calculation of influence caused by nucleon Fermi motion on the parton distributions in nuclei. Our approach is based on the model where momenta of valence partons have some primordial distribution inside the hadron at rest, which is either provided by a statistical considerations or calculated using spherically symmetric Gaussian distribution with a width derived from the Heisenberg uncertainty relation. The sea parton contribution emerges from the similar Gaussian distribution with a width dictated by the presence of virtual pions in hadron. We show that the influence of Fermi motion changes substantially the nucleonic structure function inside the nucleus in the right direction and therefore should be considered seriously in all attempts devoted to explain the experimentally observed EMC effect for xBj>0.1x_{Bj} > 0.1.Comment: Contribution to PANIC 2002 conference, Sept. 30 - October 4, 2002, Osaka, Japan. Some misprints correcte

    Nonlinear statistical effects in relativistic mean field theory

    Full text link
    We investigate the relativistic mean field theory of nuclear matter at finite temperature and baryon density taking into account of nonlinear statistical effects, characterized by power-law quantum distributions. The analysis is performed by requiring the Gibbs conditions on the global conservation of baryon number and electric charge fraction. We show that such nonlinear statistical effects play a crucial role in the equation of state and in the formation of mixed phase also for small deviations from the standard Boltzmann-Gibbs statistics.Comment: 9 pages, 5 figures. arXiv admin note: substantial text overlap with arXiv:1005.4643 and arXiv:0912.460

    Equivalence of volume and temperature fluctuations in power-law ensembles

    Full text link
    Relativistic particle production often requires the use of Tsallis statistics to account for the apparently power-like behavior of transverse momenta observed in the data even at a few GeV/c. In such an approach this behavior is attributed to some specific intrinsic fluctuations of the temperature TT in the hadronizing system and is fully accounted by the nonextensivity parameter qq. On the other hand, it was recently shown that similar power-law spectra can also be obtained by introducing some specific volume fluctuations, apparently without invoking the introduction of Tsallis statistics. We demonstrate that, in fact, when the total energy is kept constant, these volume fluctuations are equivalent to temperature fluctuations and can be derived from them. In addition, we show that fluctuations leading to multiparticle power-law Tsallis distributions introduce specific correlations between the considered particles. We then propose a possible way to distinguish the fluctuations in each event from those occurring from event-to-event. This could have applications in the analysis of high density events at LHC (and especially in ALICE).Comment: Revised version with new figure, footnotes and references adde

    Nonextensive statistical effects in the hadron to quark-gluon phase transition

    Full text link
    We investigate the relativistic equation of state of hadronic matter and quark-gluon plasma at finite temperature and baryon density in the framework of the nonextensive statistical mechanics, characterized by power-law quantum distributions. We study the phase transition from hadronic matter to quark-gluon plasma by requiring the Gibbs conditions on the global conservation of baryon number and electric charge fraction. We show that nonextensive statistical effects play a crucial role in the equation of state and in the formation of mixed phase also for small deviations from the standard Boltzmann-Gibbs statistics.Comment: 13 pages, 10 figure

    The imprints of superstatistics in multiparticle production processes

    Full text link
    We provide an update of the overview of imprints of Tsallis nonextensive statistics seen in a multiparticle production processes. They reveal an ubiquitous presence of power law distributions of different variables characterized by the nonextensivity parameter q > 1. In nuclear collisions one additionally observes a q-dependence of the multiplicity fluctuations reflecting the finiteness of the hadronizing source. We present sum rules connecting parameters q obtained from an analysis of different observables, which allows us to combine different kinds of fluctuations seen in the data and analyze an ensemble in which the energy (E), temperature (T) and multiplicity (N) can all fluctuate. This results in a generalization of the so called Lindhard's thermodynamic uncertainty relation. Finally, based on the example of nucleus-nucleus collisions (treated as a quasi-superposition of nucleon-nucleon collisions) we demonstrate that, for the standard Tsallis entropy with degree of nonextensivity q < 1, the corresponding standard Tsallis distribution is described by q' = 2 - q > 1.Comment: 12 pages, 3 figures. Based on invited talk given by Z.Wlodarczyk at SigmaPhi2011 conference, Larnaka, Cyprus, 11-15 July 2011. To be published in Cent. Eur. J. Phys. (2011

    Challenges in QCD matter physics - The Compressed Baryonic Matter experiment at FAIR

    Full text link
    Substantial experimental and theoretical efforts worldwide are devoted to explore the phase diagram of strongly interacting matter. At LHC and top RHIC energies, QCD matter is studied at very high temperatures and nearly vanishing net-baryon densities. There is evidence that a Quark-Gluon-Plasma (QGP) was created at experiments at RHIC and LHC. The transition from the QGP back to the hadron gas is found to be a smooth cross over. For larger net-baryon densities and lower temperatures, it is expected that the QCD phase diagram exhibits a rich structure, such as a first-order phase transition between hadronic and partonic matter which terminates in a critical point, or exotic phases like quarkyonic matter. The discovery of these landmarks would be a breakthrough in our understanding of the strong interaction and is therefore in the focus of various high-energy heavy-ion research programs. The Compressed Baryonic Matter (CBM) experiment at FAIR will play a unique role in the exploration of the QCD phase diagram in the region of high net-baryon densities, because it is designed to run at unprecedented interaction rates. High-rate operation is the key prerequisite for high-precision measurements of multi-differential observables and of rare diagnostic probes which are sensitive to the dense phase of the nuclear fireball. The goal of the CBM experiment at SIS100 (sqrt(s_NN) = 2.7 - 4.9 GeV) is to discover fundamental properties of QCD matter: the phase structure at large baryon-chemical potentials (mu_B > 500 MeV), effects of chiral symmetry, and the equation-of-state at high density as it is expected to occur in the core of neutron stars. In this article, we review the motivation for and the physics programme of CBM, including activities before the start of data taking in 2022, in the context of the worldwide efforts to explore high-density QCD matter.Comment: 15 pages, 11 figures. Published in European Physical Journal

    The Modification of the Scalar Field in dense Nuclear Matter

    No full text
    We show the possible evolution of the nuclear deep inelastic structure function with nuclear density ρ. The nucleon deep inelastic structure function represents distribution of quarks as function of Björken variable x which measures the longitudinal fraction of momentum carried by them during the Deep Inelastic Scattering (DIS) of electrons on nuclear targets. Starting with small density and negative pressure in Nuclear Matter (NM) we have relatively large inter-nucleon distances and increasing role of nuclear interaction mediated by virtual mesons.When the density approaches the saturation point, ρ = ρ0, we have no longer separate mesons and nucleons but eventually modified nucleon Structure Function (SF) in medium. The ratio of nuclear to nucleon SF measured at saturation point is well known as “EMC effect”. For larger density, ρ > ρ0, when the localization of quarks is smaller then 0.3 fm, the nucleons overlap. We argue that nucleon mass should start to decrease in order to satisfy the Momentum Sum Rule (MSR) of DIS. These modifications of the nucleon Structure Function (SF) are calculated in the frame of the nuclear Relativistic Mean Field (RMF) convolution model. The correction to the Fermi energy from term proportional to the pressure is very important and its inclusion modifies the Equation of State (EoS) for nuclear matter

    Σatomic states and the nucleon distribution in Pb

    No full text
    The analyses of (K -,π) and (π-, K +) reactions indicate that the nuclear potential of the Σ-hyperon is repulsive inside the nucleus, in agreement with the prediction of model F of the Nijmegen baryon-baryon interaction. This is consistent with the recent calculation of the strong-interaction shifts and widths of the observed levels of Σ- atoms, including the precise data on the Σ-Pb atom. In this paper, the sensitivity of this calculation to the neutron and proton density distributions is used to determine these densities in 208Pb
    corecore